Non-invasive Direct Electrical Recording of the Brain
The terminology “non-invasive” and “direct recording” have never been a happy couple in neurotechnology because it is so tough to literally touch the brain–a goopy ball of mostly water–with electrodes without inflicting potentially debilitating and paralyzing damage to the host.
Until recently…
Researchers from the Wadsworth Center have developed a unique thin-film electrode membrane that cleverly “sticks and grabs” to the squishy surface of the brain instead of exerting enough force to penetrate. The technology can be immediately used to improve current techniques of electrocorticography (ECoG), which is used by brain surgeons to map out functional areas in the brain to avoid during surgery. The ECoG information provides much more detailed spacial maps for the corresponding electroencephalography (EEG) recordings taken purely non-invasively through the skull.
By studying the electrical activity for specific motion, auditory responses, or visual responses during these open-brain recording sessions, the researchers hope to learn more about the language of the brain in an attempt to develop future implantable electrode devices to control integrated prosthetic systems.
There is still a long way to go with this approach, however. Even though the ECoG method is taken directly at the surface of the brain, this still represents a significant averaging of neural activity. It is yet to be determined if this level of measurement is specific enough to represent exact functional responses between the brain and the body (or external prosthetic device). But, it is certainly an important technological leap that can lead to new information on understanding brain function and how to directly communicate with our networked neurons.
“Less-Invasive Brain Interfaces” :: Technology Review by MIT :: November 21, 2008 :: [READ]
[ WATCH VIDEO OF ELECTRODE DEVICE ]
Subscribe to the DPR Journal
Read Neuron News
[ READ NOW ] Recent
- 10 Free Must-read Books on AI (KDnuggets)
- 12 Deep Learning Researchers and Leaders (KDnuggets)
- Top 10 Best Podcasts on AI, Analytics, Data Science, Machine Learning (KDnuggets)
- Why Machine Learning is vulnerable to adversarial attacks and how to fix it (KDnuggets)
- AI in the Family: how to teach machine learning to your kids (KDnuggets)
- An Hour of Code may lead to a Lifetime of Creativity
Topics
- Amateur Research (71)
- AmSci Opportunities (46)
- AmSci Reviews (5)
- Science at Home (20)
- apps by dpr (1)
- Citizen Science (82)
- Code is Poetry (1)
- In Brief (9)
- KDnuggets (5)
- Neuron News (110)
- Bionics (17)
- Brain Development (17)
- Consciousness & Mind (16)
- Ethics & Neurotechnology (5)
- Neuron-computer Interface (20)
- Neurons & Genes (13)
- Neurophilosophy (5)
- Neurotech Companies (5)
- Neurotech Research (8)
- People in the Field (3)
- The Connectome (1)
- STEM (1)
- The Future (3)
- Amateur Research (71)
Archives
Search DPR
CitSci Resources
- Citizen of Science
- Citizen Science League
- Citizen Science Projects Network
- Citizen Scientists League
- Cornell's Citizen Science Central
- Cornell's Open-access arXiv.org
- CrowdResearch.org Follow the Crowd
- DIY Bio
- Hackerpspaces
- Hypography
- Make: Projects
- Open Culture
- OpenScientist
- SA Citizen Science
- Science 2.0
- Science Cheerleader
- Science for Citizens
- SciStarter
- Space Hack
- The Citizen Science Quarterly
Neurotech Resources
- Brain & Mind Magazine
- Google Directory of Consciousness Studies
- National Institute of Neurological Disorders and Stroke's Neural Prosthesis Program
- Nature Precedings
- Neurosciences on the Internet
- Neurotechnology Industry Organization
- Neurotechnology Industry Organization
- Neurotechnology on Wikipedia
- NIH VideoCast Archive Neuroscience
- The History of Neuroscience in Autobiography from SfN
- University of Michigan Center for Neural Communication Technology
- Whole Brain Catalog
This weblog is licensed under a
Creative Commons License.