Much research into brain function looks at large-scale electrical behavior of the brain. For example, fMRI is a wonderful tool and can peer deep into our brain’s function while we are alert and making decisions that might be detected by the machine.

Although this sort of information and attempt at a broad understanding of brain activity is valuable, a pure understanding of how our complex minds truly work is still locked away at a lower level of structure. Not as low as the individual neuron itself, but at the level of the interconnectivity of enormous collections of neurons.

A single neuron is impressive, but is biologically rudimentary in function (and this is such an understatement!). A ball of 10^11 neurons is a biological mess. However, a vast, interconnected network of 10^11 neurons is really something, and it somehow produces something else truly special: our minds.

The following two articles provide a crucial reminder of the importance that a global view doesn’t quite get us to the deepest answers… and that the specific interactivity of the neuron networks themselves presents some interesting behaviors.

But, even this latter work (as you must read by following the links below) is entirely based on mathematical modeling, which is certainly an important method for creating hypothesis of how neuron networks might work in the real world. This theoretical computational approach also offers new inspirations to what to look for during actual experiments on living neural communication. It’s “just” a model, however, and not quite the real world. So, we’re still far from complete understanding.

As has already been said here on Neuron News before (and will be written about many more times because it is so critical!), the future of neurotechnology will rely on our deep understanding of the network behavior of neurons because it is the network — in particular, the structure of this network — that is the underlying physics of higher brain functioning.

To understand the network is to understand the brain. With this understanding, we will be able to develop the technology to externally connect into the brain.

“Decision Making in the Brain: Eavesdropping on Neurons” :: Scientific American :: August 5, 2008 :: [ READ ARTICLE ]

“When Neurons Fire Up: Study Sheds Light On Rhythms Of The Brain” :: ScienceDaily :: August 5, 2008 :: [ READ ARTICLE ]

“Nonperiodic Synchronization in Heterogeneous Networks of Spiking Neurons” :: The Journal of Neuroscience :: August 6, 2008, 28(32):7968-7978 :: [ READ ABSTRACT(full article text requires subscription)

 

Share your thoughts...

Last updated July 16, 2018